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Abstract The mechanisms that control cellular prolifer-
ation, as well as those related with programmed cell
death or apoptosis, require precise regulation systems to
prevent diseases such as cancer. Events related to cellu-
lar proliferation as well as those associated with apopto-
sis involve the regulation of gene expression carried out
by three basic genetic expression regulation mecha-
nisms: transcription, splicing of the primary transcript
for mature mRNA formation, and RNA translation, a ri-
bosomal machinery-dependent process for protein syn-
thesis. While development of each one of these process-
es requires energy for recognition and assembly of a
number of molecular complexes, it has been reported
that an increased expression of several members of
these protein complexes promotes apoptosis in distinct
cell types. The question of how these factors interact
with other proteins in order to incorporate themselves
into the different transduction cascades and stimulate
the development of programmed cell death, although
nowadays actively studied, is still waiting for a clear-cut
answer. This review focuses on the interactions estab-
lished between different families of transcription, elon-
gation, translation and splicing factors associated to the
progression of apoptosis.
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Introduction

Apoptosis is an intrinsic programmed cell death mecha-
nism important in cellular homeostasis, embryonary de-
velopment, and during the appearance of a series of dis-
eases such as cancer [1, 2]. The mechanism of apoptosis
is divided mainly into the following four stages: the first
comprises a series of stimuli received by cells that give
rise the development of the process; the second involves
transduction of signals that act directly on executor ac-
tors, i.e., specific proteases known as caspases [3]; third
stage is composed of the action of these enzymes pro-
moting cellular disassembly; and finally the fourth and
last stage during which apoptotic bodies form and get
absorbed through specific cell phagocytic processes [3].

There are two well recognised apoptotic pathways:
the cytoplasmatic membrane death receptor pathway
and the mitochondrial pathway. Although, both manage
independent transduction cascades, they converge at the
caspase activation point to accomplish cellular disas-
sembly [4]. Despite the fact that both pathways have
been well established, the different stimuli favouring
their development have yet to be identified. Although
several proapoptotic molecules have been described
[5–8], recent developments address the proapoptotic
role of an increased expression of several members of
the transcription-factor family of proteins related to the
translation of diverse proteins as well as to the onset of
the splicing event [7, 9–11]. Studies conducted on the
overexpression of such proteins suggest they can be in-
tegrated into the transduction pathway of apoptosis [7].
Therefore, in this review we emphasise the importance
of these proteins as regulators of cell proliferation as
well as programmed cell death.
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Basal transcription factors

RNA polymerases active in eukaryote cells include RNA
polymerase I, II and III (pol I, II, III), which transcribe
DNA into rRNA, mRNA and tRNA respectively. During
the transcription mechanism, in addition to polymerases,
a series of proteins are required to participate in the initi-
ation of the transcription process and denominated tran-
scription factors. These factors recognise DNA cis sites
as part of promoters or enhancers [12]. Ribosomal DNA
transcription by RNA pol I is required for cell growth
due to its role in the synthesis of ribosomal RNA (rRNA)
[13], while transcription activity of RNA pol III allows
cell cycle progression [14]. This review emphasises the
key role of changes in the expression levels of transcrip-
tion factors type II participating in mRNA synthesis,
crucial for cell growth and programmed cell death.

In general, transcription factors that interact with
RNA pol II are classified into three groups. The first
group corresponds to general factors needed for RNA
transcription of all promoters. Upon association with
RNA pol II, they form a molecular complex located at the
starting point of transcription constituting the basal tran-
scription apparatus. The second group of factors, that cor-
respond to DNA binding proteins, recognise sequences
localised upstream of the initiation site. Finally, the third
group comprises DNA binding proteins with a regulatory
function. The latter are activated or synthesised by specif-
ic tissues at specific times, and sequences to which they
bind in DNA are known as response elements [12].
Transcription factors that work with RNA pol II have
been termed RNA pol II transcription factor X (TFIIX),
where X corresponds to the letter that identifies the indi-
vidual factor. These basal factors bind sequentially until
they form the transcription initiation complex. TFIID cor-
responds to the first factor to bind a sequence upstream
of the TATA promoter region and presents two TATA
binding proteins (TBP) and TATA recognition proteins
called TBP-associated factors (TAFs). After TFIID bind-
ing, they sequentially couple the TFIIA and TFIIB fac-
tors. During this process, TFIIF binds to RNA pol II and
later associates to the transcription complex. Other tran-
scription factors such as TFIIE, TFIIH and TFIIJ are nec-
essary to allow RNA pol II to move along the entire pro-
moter. The TFIIH transcription factor possesses ATPase,
helicase and kinase activities, phosphorylating and acti-
vating RNA pol II [12]. In addition to the basal transcrip-
tional factors group, other related families whose mem-
bers favour transcription development, such as the E2F
and STAT families, are described next.

E2F and STAT families

The E2F transcription group of factors corresponds to a
series of proteins originally discovered in an adenovirus

and demonstrated to interact with the E1A transforming
protein, thus mediating the E2 viral promoter transcrip-
tion activity [15]. E2F factors constitute a family of
transcription proteins that participate in cell cycle regu-
lation and in mammal cell apoptosis [16] (Table 1). The
nucleotide sequence recognised by this factor in the E2
promoter corresponds to TTTCGCGC. Similar se-
quences have been recognised with other promoters
whose functions are important during cell cycle (cyclins
and other DNA synthesis-associated genes) [9]. The ma-
jority of E2F proteins heterodimerise with DRTF-1
DNA binding protein (DP) polypeptide family members
to form active transcription factors [9, 17, 18]. E2F con-
trols transcription of a gene group that codifies for cell
cycle G1/S transition event-related function proteins
that include the thymidine kinase, α polymerase DNA
and dihydrofolate reductase [19]. Nevertheless, despite
the fact that eight mammalian E2F family genes have
been identified (E2F1–8), the majority of E2F proteins,
with the exception of E2F7, heterodimerise with DP1
and DP2, each codified by a sole gene [20, 21].

E2F/DP complexes interconnect with proteins codi-
fied by three interrelated genes: Rb, p107 and p130 [20,
22] (Fig. 1). In general, E2F family members are select-
ed according to their function as transcription-process
activators (E2F1, E2F2 and E2F3a) or repressors
(E2F3b, E2F4, E2F5, E2F6, E2F7 and E2F8) [20, 23,
24] (Fig. 1). From this list, E2F8, when overexpressed
in mouse-embryo primary fibroblasts, decreases cellular
proliferation [24]. It is known that E2F1–3 proteins lo-
calised in the nucleus principally bind to Rb. E2F-4 and
E2F-5 do not present a nuclear localisation signal and
preferentially bind to p107/p130. It has also been de-
monstrated that E2F6 suppresses transcription activity
of different proteins that belong to the E2F family [16].

E2F proteins actively participate in the transcription
process and interact with basal transcription factors
such as TBP and the TFIIH transcription factor [25].
Similarly, they participate as mediators for carrying out
the interaction between TFIID and TFIIA factors [26].
E2F also presents the capacity to unfold DNA, thus acti-
vating transcription [27]. Moreover, as several mecha-
nisms are known where E2F proteins participate in tran-
scription activation, it is necessary to bear in mind that
different E2F proteins posses distinct effects on the cell
cycle.This situation occurs with EF1-3 inducing the S
phase in several cell types [28, 29].

On the other hand, the pocket family of proteins con-
sidered as cell cycle regulators is composed of pRB,
p107 and p130. These proteins function during the G1-S
transition and are associated with regulation of target
genes that respond to E2F transcription factors [20]
(Fig. 2).

There is evidence that E2F transcription factors are
targets for hypophosphorylated Rb, fulfilling its tumour
suppressor function by inhibiting E2F and blocking its
cell-cycle transcription and progression activator func-
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tion [9, 30, 31] (Fig. 1). Notwithstanding this, in 1998
Kowalik et al. demonstrated that activation of apoptosis
carried out through overexpression of factor E2F1 can
be due to the fact that this protein acts as a specific sig-
nal inducing the apoptotic mechanism and affecting the
accumulation of the tumour suppressor protein p53 [32]
(Fig. 2). Despite the fact that E2F1 participation in
apoptosis induction was thought to be p53-independent,
it has been demonstrated that the E2F1 protein promotes
p53 phosphorylation [33, 34].

Interestingly, the p53 protein gene was the first gene
that, on being expressed, acts as a tumour suppressor.
Mutations of this gene have been found in between 50
and 55% of all types of human cancer [12, 35, 36]
(Table 1). p53 protein-generated translational pathways
can be activated by different stimuli, such as DNA dam-
age and aberrant cell growth signalling [12]. Between
these stimuli, environmental pollutants and even med-
ical treatments promote a dose response increase of p53
[37, 38]. p53 target genes are related to cell cycle inhi-

Table 1 Gene expression factors

Expression Cell Functions in cell Binding Proapoptotic References
factors localisation cycle ligand function

Transcription factors
E2F family
E2F1, E2F2, E2F3a Nucleus Activators of cell cycle Rb E2F1, E2F2, E2F3a, [23, 24, 32, 

E2F3b 34, 39, 
43–47]

E2F3b, E2F4, E2F5, Repressors of cell cycle p107/p130 E2F4, E2F5 [16, 23, 24,
E2F6, E2F7 48, 49]

E2F8 Repressor of cell cycle [24]

STAT family
Stat 1–4, 5A, 5B, 6 Cytoplasm Transcription factors 1, Stat 1 [12]

Stat 3 and Stat 5 function
as cell cycle activators.
Cell transformation,
inhibition of apoptosis

Other transcription factors
TP53 tumour suppressor Nucleus Growth arrest, maintenance TP53 participates in Proapoptotic [12, 35, 36]

gene belongs to a of genome integrity, transactivation of several function
family of highly cellular senescence, DNA proapoptotic target genes
conserved genes that repair, inhibition of as members of bcl-2
contains at least two cell cycle and apoptosis family. Activation of
other members, P63 extrinsic apoptosis
and TP73 pathway in response

to DNA damage
Rb Nucleus Inhibition of cell cycle E2F1, E2F2, E2F3a, Established [12, 20]

and apoptosis E2F3b proapoptotic function
p107 Nucleus Inhibition of cell cycle E2F4, E2F5 Established [12, 20]

and apoptosis proapoptotic function

p130 Nucleus Inhibition of cell cycle E2F4, E2F5 Established [12, 20]
and apoptosis proapoptotic function

Translational factors
eIF-1A, eIF-3, eIF-4A, Cytoplasm Translation initiation Assembly complex in [10, 11,

eIF-4E, eIF-4F, factors, cell proliferation, the ribosome for 79–81]
eIF-4G, eIF-5A human oncogenes eIF4E, initiation of translation

eEF1A2
EF-1, EF-2, eEF-1A, Cytoplasm Translation elongation Elongation mechanisms eEF-1A [82, 83]

eEF-1B factors of translation
eRF-1 Cytoplasm Translation terminus Terminus mechanism [85]

factors of translation

Splicing factors
UAP56, KIAA0801, Cytoplasm Splicing of primary RNA Formation of spliceosome Fragment of Prp8 [7, 110]

U5-100, U5-200, to produce mRNA complex
KIAA0577, hPrp16,
Hrh1, mDEAH9,
Prp8
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bition, DNA repair and apoptosis associated to the inhi-
bition of blood vessel formation through transcription
regulation of thrombospondin (TSP1) [12].

Several studies have shown that E2F1, E2F2 and
E2F4 present specific structural properties, and induce

apoptosis in astrocytoma cells [39]. While the E2F1
protein presents structural domains like cyclin A and the
pRb binding domain, E2F4 does not possess a cyclin A
binding domain and preferentially binds to p107 and
p130 [40]. Employing transgenic megakaryocytes, it has

Fig. 1 Molecular interaction between E2F family members and RB, p107 and p130 proteins. While E2F proteins
heterodimerise with DP1 and DP2 proteins, the E2F7 protein homodimerise. When hypophosphorylated Rb
binds to transcription factors, cell cycle progression is arrested. In contrast, the phosphorylated Rb protein releas-
es transcription factors and promotes initiation of the cell cycle.

Fig. 2 The increased expression of E2F1, Prp8 and EF-1A (EF-1alpha) factors as a mechanism to induce apopto-
sis. (1) transcription, (2) splicing and (3) translation are crucial mechanisms in the regulation of cell physiology
and directly related with the progression of the cell cycle and programmed cell death.



been shown that overexpression of the E2F1 transcrip-
tion factor increases apoptosis [41], while knockout
mice for E2F1 slow down the onset of this process [42].
Therefore, it is important to mention the functional vari-
ability of diverse E2F family members, for example,
E2F1 induces apoptosis in several cell types [32, 34,
43–47] and E2F3 participates in cell proliferation [48,
49], while E2F4 and E2F5 intervene in differentiation
and development mechanisms, respectively [50–52].

On the other hand, novel E2F family members have
been studied recently; for example, E2F3b codifying for
an mRNA unique transcript of the E2F3 locus that pres-
ents structural differences with the member now denomi-
nated E2F3a [53, 54]. It is known that E2F3a corresponds
to a transcription activator, while E2F3b functions as a
transcription repressor [55]. E2F6 as well as E2F7 can
also be transcription repressors and their primary RNA
presents alternative splicing; therefore, they produce
several isoforms whose function has yet to be deter-
mined [56, 57]. Additionally, the antagonistic behaviour
of E2F, another family member, has been questioned.
While increased EF2-1 levels induce cell apoptosis,
augmented EF2–4 levels provoke apoptosis inhibition in
different cell types [58]. Leone and colleagues in 2001
demonstrated that Myc overexpression induced cell
death after culture without growth factors, and corre-
sponds to an E2F functional protein-dependent process
[59]. Moreover, in 2002 Wells and colleagues found that
E2F1-specific target genes possess different functions if
compared with target genes for the remainder of the
E2F family [60]. Several examples of these target genes
include the thioether S-methyltransferase, the hydroxys-
teroid sulphotransferase and the carboxylesterase, which
when altered provoke different responses [60]. In addi-
tion, it has been found that the E2F1 protein regulates
BH3 proapoptotic protein expression such as PUMA,
Noxa, Bim and Hrk/DP5, by means of a direct transcrip-
tional mechanism, demonstrating the connection between
E2F and the apoptotic machinery [61]. Adenoviral vec-
tor-associated E2F-1 overexpression suppresses in vitro
and in vivo growth of head and neck squamous carcino-
ma cell lines Tu-138 and Tu-167 through induction of
apoptosis [62, 63].

Members of the E2F family show different individ-
ual functions in cells, the most generalised being at the
S-phase through transcription regulation of genes [64,
65]. It is speculated that the E2F-RB complex can pos-
sess a direct function on DNA replication mechanisms
[66, 67]. Moreover, it is known that many genes whose
function is primordial in mitotic process development
correspond to E2F1 transcription-factor target genes
[65]. Other E2F protein-regulated genes include those
involved in DNA repair mechanisms [68]. Another ex-
tremely important characteristic contributing to cellular
homeostasis by the E2F family corresponds to the in-
duction into programmed cell death by means of the ac-
tivation of some of its members after DNA damage or

through overexpression of E2F1 [47, 67, 69] (Fig. 2).
Apoptosis induction properties of E2F2 and E2F3 can
be achieved through p53-dependent as well as inde-
pendent apoptotic pathways, where in the latter another
family member such as p73 must participate [70, 71].

E2F1/DP1 induces activation of other essential and
common components of the different apoptotic path-
ways, such as caspases, Apaf1, and several proapoptotic
and antiapoptotic family members including bcl-2. It
was demonstrated that E2F1 inhibits NFkappaβ-promot-
ed cell survival signals. Likewise, it was found that DP
proteins are necessary for activity regulation of several
E2F family members essential for the complex to func-
tion [72] (Fig. 1). E2F transcription factor activity is
deregulated during the development of several cancer
types [73], and related to the presence of mutations of
the Rb gene, which functions as a ligand [20]. Several
reports support this affirmation, for example E2F3 over-
expression in gall bladder cancer [74]. E2F1 overexpres-
sion employing a Sk-MEL-2 melanoma cell line affects
the expression of a broad range of genes, including tran-
scription factors, oncogenes and cell cycle regulation-
associated genes, all apparently related to apoptosis [75].

The family of proteins known as STAT correspond
to a group of cytoplasmatic proteins that participate in
the normal cellular response to cytokines and growth
factors including EGF and PDFG (Table 1). There are
seven members identified in mammals so far (Stat 1, 2,
3, 4, 5A, 5B and 6) [12]. Activation of STAT proteins
mediates the expression of genes that control diverse
cell processes such as development, differentiation, pro-
liferation, inflammation and apoptosis [12].

In normal cells, ligand-dependent STAT activation is
a transitory process, differing from many tumour cell
lines in which STAT proteins (1, 3 and 5) are activated
or phosphorylated for prolonged periods. Stat 1 impor-
tantly functions in growth arrest, as well as in the pro-
motion of apoptosis, which is why it was proposed as a
tumour growth suppressor. Nonetheless, Stats 3 and 5
possess antagonistic functions in cell cycle promotion,
cell transformation and inhibition of apoptosis [12].
Different oncoproteins such as Src and Ab1 activate
STAT family members, as in the case of Stats 3 and 5
[12]. In addition to the protein groups already described,
it is important to mention other protein groups with
functions indirectly related to the activation of the apop-
totic process.

Translational factors and protein synthesis

The mechanism of protein translation is carried out in
the ribosomes from mRNA transcribed in the nucleus.
Protein synthesis consists of three stages: initiation,
elongation and termination, where the initiation stage is
complex and consists of ribosome dissociation, tRNA

J.V. Tapia-Vieyra et al.: Proapoptotic role of novel gene-expression factors 359



initiator and mRNA binding to the 40 S subunit [76-78].
This process requires different factors, initially termed
as initiation factors (IFs), among which are found eu-
karyote protein-synthesis initiation factors (eIF) eIF-1A,
eIF-3, eIF-4A, eIF-4E, eIF-4F, eIF-4G and eIF-5 [10,
79–81] (Table 1). Initiation factors associated to protein
synthesis permit the 60 S subunit associations for com-
plete ribosome reconstitution. Then, the second or elon-
gation phase begins and requires, as did the initiation
phase, factors known as elongation factors EF1 and EF2
[82]. Factors involved in amino acyl-tRNA incorpora-
tion-related elongation factors include eEF1A (formerly
known as EF-1α) and eEF1B, while ribosome transloca-
tion is taken over by eEF2 [83]. eEF1A, presenting gua-
nine nucleotide binding sites, interacts with amino acyl-
tRNA and is transported to site A in the ribosome [84].
A liberation factor known as eRF-1 participates during
the termination phase [85].

mRNAs possess different stabilities within a cell
with a half-life that fluctuates approximately between 30
min and 15 h. mRNA stability is associated with nu-
cleotide sequences present in the RNA within the 3' un-
translated (3' UTR) region that promotes rapid deanyla-
tion of the 3' polyadenylated tail. The 5' extreme cap is
eliminated sequentially, thus, mRNA degrades in the
5'–3' direction. The most labile mRNAs contain one or
more AU-rich sequences in this region [86, 87].
However, approximately 3–5% of mRNAs are translated
by a cap-independent mechanism containing an internal
ribosome entry site (IRES) in 5'UTR [88, 89]. Many
mRNAs that contain IRESs codify for proteins that par-
ticipate in cell growth, proliferation, differentiation and
apoptosis regulation processes [90]. Several studies
have shown that overexpression of eIF-4E promotes a
proliferation increase and the neoplastic transformation
of specific tissues [91] (Table 1). It has been demon-
strated that eIF-4E can be overexpressed in head and
neck cancer cells [92], in HeLa cells [93], as well as
colon, lung and breast cancers [92, 94]. It has been re-
ported that among the functions carried out by this eIF-
4E translational factor, an increased production of a se-
ries of proteins that promote cell growth, such as cyclin
D1 and c-Myc, has been described [95, 96]. eIF-4E fac-
tor overexpression favours development of metastasis
through the expression of proteins involved in this
mechanism, such as type IV collagenase [97]. An in-
creased eIF-4E expression also provokes apoptosis inhi-
bition in cMyc-induced cells [98], as well as during cell
transformation activation (Table 1). Both functions are
dependent on post-translational modifications consist-
ing of a chemical modification of a lysine, the hypusine
amino acid [N epsilon-(4-amino-2-hydroxybutyl) ly-
sine] protein precursor [99]. As eIF-4G overexpression
causes malignant transformation in NIH3T3 cells,
eIF4E and eEF1A2 factors were recognised as human
oncogenes [100]. Nevertheless, an increased translation-
al-factor expression is not necessarily related with neo-

plasia development, as this event is cell-type dependent
[94]. Moreover, several reports show translation initia-
tion factors as substrates for caspases. Such is the case
with eIF2α, which is phosphorylated and cleft at the
carboxy-terminal sequence [101].

On the other hand, GTP-dependent aminoacyl-tRNA
binding to ribosomes as well as other functions related
with cytoskeleton organisation depend on peptide elon-
gation factors. Serum elimination induced apoptosis in
mouse 3T3 fibroblast cells, a phenomenon that seems to
be associated to a change in the level of EF-1α [102].
Other studies conducted using H2O2-induced apoptosis
in rat embryo heart cells demonstrated that this elonga-
tion factor increases during the process, and promotes
the apoptotic event [102, 103] (Fig. 2). EF-1A (EF-1α)
overexpression in haematopoietic IL-3 cells also in-
duces the apoptotic process [102, 103] (Table 1).

Splicing factors

The first transcripts produced by RNA pol II present in-
tercalated sequences that interrupt exons known as in-
trons. While the latter are eliminated by splicing, mature
mRNA produced afterwards is transported into the cyto-
plasm for protein synthesis [104]. To perform the splic-
ing process, the specific conformation of a molecular
complex is required. This is composed of small nuclear
RNAs, snRNAs U1, U2, U4/U6 and U5 (U, uridine-
rich), which are associated with several proteins [105,
106]. The RNA-protein molecular association receives
the name of ribonucleoproteic particles (snRNPs), or
snurps for those smaller in size [105, 106]. The spliceo-
some is a molecular complex whose components in-
clude specific-function proteins divided mainly into two
groups: snRNPs proteins, which are closely associated
with snRNAs, and the non-snRNP splicing factors
[107]. The former are subdivided into snRNPs and Sm
proteins, which congregate around a U-rich RNA se-
quence [108, 109]. Among the splicing factors whose
presence is indispensable for spliceosome assembly, Prp
8 has been considered an important promoting factor for
splicing [110].

Our group recently carried out the isolation, charac-
terisation and expression in Xenopus laevis oocytes of
an apoptosis-regulated protein (ARP2) from androgen-
independent, lymph-node prostate cancer cells (LNCaP)
[7]. arp2 cDNA presents 1.3 kb and shows a 98% se-
quence homology with 18% of the complete sequence
of Prp8 splicing factor [110]. mRNA expression of arp2
in Xenopus laevis oocytes produces apoptosis-associat-
ed biochemical, morphologic and electrophysiologic
changes [7, 111, 112]. The Prp8 cDNA splicing factor
contains approximately 7 kb and the codified protein
shows the function of snRNA U5 recognition and binds
to RNA in the spliceosome [110]. Therefore, it was giv-
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en a central role in RNA catalytic arrangements
[108–110]. Interestingly, within the arp2 cDNA nu-
cleotide sequence, there are flanking sequences that cor-
respond to the htrp3 capacitative calcium entry channel
[113], which is why, during arp2 mRNA expression,
calcium entry currents were looked for and found. This
report constitutes the first study demonstrating that arp2
mRNA expression in Xenopus laevis oocytes promotes
the mechanism of apoptosis in these cells  [7].
Notwithstanding this, due to arp2 homology with Prp8
we consider that ARP2 corresponds to a proapoptotic
molecule in itself. It is for this reason that we have pro-
posed a functional model for ARP2 (Fig. 3). Recently
Prp8 was shown to present specific segments important
in spliceosome assembly [114], as well as specific ubiq-
uitin binding domains similar to the ones found in other
proteins related to ubiquitation and cell regulation
[115]. These observations support our proposal that
ARP2 might define a membrane-targeted structural do-
main with functions different to the ones fundamental in
spliceosome assembly.

As genetic expression is a highly regulated cellular
function that allows cells to carry out a coordinated and
well controlled proliferation, mechanisms integrating
this cellular function require inter- and intracellular sig-
nals promoting the activation of proteins that in turn

give rise to transductional cascades. However, when
there is DNA damage, cells send specific signals that
are detected and consequently propagated to give notice
that this is the decision-making moment for defining the
cell’s fate; that is, whether to repair the damage or to ac-
tivate the programmed cell death pathway. This cell
strategy defines an efficient way to avoid proliferation
of physiologically non-viable cells, therefore impeding
the development of diseases such as cancer. Although
the main programmed cell death pathways have been es-
tablished, multiple studies continue to find molecules
that are involved in their modulation. The proapoptotic
function proposed for several molecules, such as tran-
scriptional, splicing and translation factors, can be asso-
ciated with the fact they present specific structural do-
mains that allow the association to specific molecules
and function as tumour suppressor proteins. How these
proteins integrate into signalling cascades is a process
that remains under study. Further knowledge of the mol-
ecules such as the ones described here and the processes
they are involved with, eventually will allow us to un-
derstand, and therefore propose control mechanisms to
modulate, unchained cell proliferation.
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