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Abstract. Microrheology measurements were performed on suspensions of bacteriophage fd with diffusive
wave spectroscopy in the concentrated regime, at different values of ionic strength. Viscosity vs. shear
rate was also measured, and the effect of bacteriophage concentration and salt addition on shear thinning
was determined, as well as on the peaks in the viscosity vs. shear curves corresponding to a transition
from tumbling to wagging flow. The influence of concentration and salt addition on the mean square
displacement of microspheres embedded in the suspensions was determined, as well as on their viscoelastic
moduli up to high angular frequencies. Our results were compared with another microrheology technique
previously reported where the power spectral density of thermal fluctuations of embedded micron-sized
particles was evaluated. Although both results in general agree, the diffusive wave spectroscopy results are
much less noisy and can reach larger frequencies. A comparison was made between measured and calculated
shear modulus. Calculations were made employing the theory for highly entangled isotropic solutions of
semiflexible polymers using a tube model, where various ways of calculating the needed parameters were
used. Although some features are captured by the model, it is far from the experimental results mainly at
high frequencies.

1 Introduction

Many of the diverse material properties observed in fluid
soft materials are related to the complex supramolecular
structures embedded in them, as is the case of suspensions
of wormlike micelles, F-actine, and filamentous viruses,
where their threadlike or filamentous structures form an
entangled network that introduces a complex dynamics,
usually described with multiple characteristic lengths and
time scales, which are analogous to those used in poly-
mers. Typical characteristic lengths are filament diameter
d, contour length Lc, persistence length lp, mesh size ξ,
and entanglement length le. The ratio between Lc and
lp provides a criterion to distinguish between two asymp-
totic classes of these threadlike structures, the flexible ones
(Lc ≫ lp) and the rigid-rod ones (Lc ≪ lp). Whereas
the viscoelastic behavior of dilute and concentrated entan-
gled solutions of flexible and rod like polymeric threadlike
structures is fairly well understood [1], there is no qual-
itatively correct description of the viscoelasticity of solu-
tions of semiflexible polymeric threadlike structures over
the whole range of concentrations. This is the case of the
filamentous fd bacteriophage suspension, which provides
an excellent model of a network made of monodisperse
semiflexible filaments, Lc ∼ lp ≫ d. The fd virus is a
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rod-shaped virus constituted by a single-stranded circular
DNA covered with a protein coat. This protein cover con-
sists of a helical shell of ∼ 2700 identical α-helical protein
subunits (∼ 50 aminoacids) wrapped following a 5-fold ro-
tation axis combined with a 2-fold screw axis, associated
to ten proteins capping each one of the two ends [2–6]. This
filament has a contour length of Lc ∼ 900 nm, with a diam-
eter dfd ∼ 7 nm, and a persistence length of lp ∼ 2200 nm;
as a consequence, the aspect ratio of fd ε = Lc/dfd ∼ 130;
fd molecular mass is MWfd ∼ 1.64×107 Da. On its surface
there are located ∼ 9000 ionizable groups that in aque-
ous solutions at neutral pH can reach a charge density of
about 9 e/nm [7]; in highly deionized water, this leads to
long-range Coulomb interaction. The fd virus isoelectric
point is at pH = 4.2, above which the virus surface is
negative, while being positive below [7]. The overlap con-
centration c∗ ∼ 1 particle/L3

c ∼ 0.04mg/mL. The equilib-
rium phase behavior of the fd virus differs from the ideal
hard rod. The finite flexibility of the virus drives the con-
centration of the bimodal points to higher values when
compared to equivalent, but perfectly stiff hard rods, and
also reduces the value of the order parameter of the co-
existing nematic phase. The effect of the surface charge is
to increase the effective diameter of the rod, and therefore
the excluded-volume interaction between charged rods. As
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a consequence, the charge reduces the real concentration
of the phase transition.

The rheological response of soft materials can be lin-
ear or nonlinear depending on the applied stress. Non-
linearity is usually a sign of structural rearrangement in
the system by the applied stress or deformation. For sys-
tems close to thermodynamic equilibrium, there is always
a linear response regime for small enough applied strain
or stress. In soft materials, one of the most important
properties is the shear modulus, G, which connects the
deformation and flow of materials in response to applied

stresses, σ =
∫ t

−∞
dt′G(t− t′)γ̇. Here, σ is the shear stress

and γ̇ is the shear rate. In contrast with other materi-
als, like simple liquids or solids, the shear modulus in soft
materials exhibit a significant time (or frequency through

G∗(ω) = iω
∫ ∞

0
G(t)e−iωtdt) dependence in the range of

milliseconds to seconds, or even to minutes. In essence, soft
materials are viscoelastic, i.e., they exhibit both a viscous
and an elastic response. Upon application of an oscillatory
shear strain at a frequency ω, the real part of G∗(ω), i.e.,
the storage modulus G′(ω) is in phase with the applied
shear strain. The imaginary part of G∗(ω), the viscous
or loss component of the stress, G′′(ω), is in phase with
the shear rate γ̇. Regularly, G∗(ω) is determined using
mechanical rheometers, where viscoelastic properties are
measured by application of a strain while measuring stress
or vice versa. However, in the last fifteen years different
techniques have been developed, usually named microrhe-
ology techniques, where micron-sized probe particles are
embedded into the fluid to locally measure the viscoelastic
response of soft materials [8]. This response can be mea-
sured either by actively manipulating the probe particles
or by passively measuring their mean square displacement,
MSD = 〈∆r

2(t)〉, where the bulk mechanical susceptibil-
ity of the fluid determines the response of these probe par-
ticles, which are excited by the thermal stochastic forces
leading to Brownian motion. 〈∆r

2(t)〉 can be related to
G∗(ω) by describing the motion of the particles with a gen-
eralized Langevin equation incorporating a memory func-
tion, to take into account the viscoelasticity of the fluid. In
this way, the particle fluctuation can be used to measure
the relaxation spectrum of the fluid. Here, in contrast to
mechanical rheometers, there is no strain applied on the
material during the measurement, something particularly
useful in soft materials, where even small imposed strains
can cause structural reorganization of the material, and
consequently a change in their viscoelastic properties.

fd bacteriophage suspensions are quite attractive soft
materials, because they form liquid crystals at specific
ranges of concentration and ionic strength [9,10]; a re-
view can be found in ref. [11]. These suspensions with
rodlike colloids also present a complex nonlinear rheol-
ogy, because orientation is strongly coupled to the shear
field [12–16]. Rods in the isotropic (I) phase align with
the flow and become paranematic (P). An isotropic state
under flow is referred to as a paranematic state to indicate
that flow partially aligns otherwise isotropic rods. The lo-
cation of the isotropic (paranematic)-nematic phase tran-
sition is modified because shear flow strongly aligns rods.

Besides, in the presence of shear flow, rods in the nematic
phase can undergo a collective tumbling motion. In addi-
tion, shear flow leads to the formation of banded struc-
tures in fd virus suspensions, which exhibit shear- and
vorticity-banding [12–16]. The linear viscolastic properties
of suspensions of fd bacteriophage have been measured
by Schmidt et al. [17] using both mechanical rheometry
and active microrehology employing a magnetic tweezers
rheometer and particle tracking. This study was mainly
addressed to get G′(ω) and G′′(ω) in the low-frequency
range (∼ 0.06 < ω < 25 rad/s) for suspensions in a con-
centration, c, range of 5–15mg/mL, with a fixed ionic
strength (I = 100mM). G′′(ω) > G′(ω) for all frequencies
below 6.2 rad/s. At frequencies above 6.2 rad/s, a shallow
and slanted plateau-like region was found for G′(ω), where
G′(ω) ∼ G′′(ω). G′′(ω) exhibits a small inflection point
at ω ∼ 6.2 rad/s. At low frequencies, according to the-
ory [18] a behavior of the form G′ ∼ ω2 and G′′ ∼ ω1 was
expected, because suspensions of semiflexible filaments be-
have more like rigid rods, since the undulatory excitations
are completely damped out; nevertheless, it was found [17]
that G′ ∼ ω0.9-1.2 and G′′ ∼ ω0.7-0.9.

In addition, zero shear viscosity, η0, was calculated
from G′′(ω)/ω. However, it was found that η0 ∼ c2.6; al-
though, η0 ∼ c3 was expected, as in the case of rigid rods.
Previously, Graf et al. [19] reported that viscosity, η, in
fd suspensions increases with the virus concentration due
to the Coulomb interaction between the rods, i.e., when
the Debye length in the suspension is in the order of the
typical interparticle distance. They also found that when
the ionic strength increases the viscosity decreases. The
authors also showed that the specific viscosity follows cer-
tain power laws on concentration, and they found that as
the shear rate increased, the viscosity decreased steadily at
constant ionic strength, I, in the considered range of con-
centration (0.04mg/mL ∼ 1c∗ to 9.12mg/mL ∼ 228c∗,
and I = 100mM). They never observed peaks in the η vs.
γ̇ diagrams as in [13]. Addas et al. [20] studied fd virus
suspensions from the dilute to the concentrated regime
(c ∼ 0.2–14mg/mL) at I = 50mM, and pH = 7. G′(ω)
and G′′(ω) were measured evaluating the power spectral
density of the thermal fluctuations of embedded micron-
sized silica particles. Here, a focused laser beam was used
to trap the microspheres, and interferometric photodiode
detection was used to measure passively the position fluc-
tuations of the trapped microspheres with nanometer reso-
lution and high bandwidth (0.62 < ω < 6.2×104 rad/s). In
the dilute regime these authors found that G∗(ω) is domi-
nated by the rigid-rod rotational relaxation. Increasing the
fd concentration, both moduli increase and, relatively, the
elastic character of the suspension increases. Just below
the isotropic-nematic phase transition, the elastic modulus
is ∼ 10Pa, and the sample is still mainly viscous, i.e., it re-
mains rather weakly entangled. This was attributed to the
relative short virus contour length and to its charged sur-
face, which prevents sticking between them. In the high-
concentration regime, at high frequencies, suspensions ap-
parently reflect a single semiflexible filament dynamics;
G′′(ω) ∼ ω3/4 as predicted for semiflexible polymers. Rhe-
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ology of modified fd virus made by grafting the polymer
poly(N -isopropylacrylamide) to the virus surface has also
been studied, this system can be treated as colloidal rods
interacting with a temperature-dependent attraction [21,
22].

The theory developed for tightly entangled isotropic
solutions of semi-flexible polymers developed by Morse
[18,23,24] has been used to understand the linear rheolog-
ical properties of high concentrated fd virus suspensions.
Here, each polymer is confined on short time scales within
a tube of diameter, De, ≪ lp. Free motions along the tube
contour are hindered only by the viscous dissipation due
to the solvent. The shape of the tube deforms affinely in
response to macroscopic deformation of the solution, and
excluded-volume interactions between polymers are ne-
glected except for keeping the polymer in its tube. The lin-
ear complex modulus of a solution of long, tightly entan-
gled chains is dominated at low frequencies by a curvature
contribution to the stress, analogous to the elastic stress of
entangled flexible chains, which relaxes by reptation and
gives rise to a broad elastic plateau. At higher frequencies,
the modulus is dominated by a larger tension contribu-
tion, whose frequency dependence is controlled at inter-
mediate frequencies by the diffusion of the excess length
along the tube. Because the tube has a nonzero diame-
ter, small transverse ondulations of the polymer within
the tube are allowed, and the dynamics of these ondu-
lation modes control the high-frequency response of the
model. Therefore, at very high frequencies the modulus
is dominated by the unhindered transverse motion of the
chain within the tube. This high-frequency regime yields
a complex modulus that varies as G∗(ω) ∼ (iω)3/4. The
calculated moduli have to be corrected to include the bare
solvent contribution by adding iωηs, where ηs is the sol-
vent viscosity.

The aim of this work is to re-examine the viscoelas-
tic properties of suspensions made of filamentous fd bac-
teriophage, particularly in the high concentrated regime
and at different values of the ionic strength. The viscos-
ity vs. shear rate, γ̇, in these suspensions was measured,
and the influence of virus concentration and salt addition
was determined on the shear thinning as γ̇ increases, as
well as on the peaks in the η vs. γ̇ curves corresponding
to a transition from tumbling to wagging flow. Further-
more, the influence of concentration and salt addition on
the MSD of microspheres embedded in virus suspensions,
and on the viscoelastic moduli up to very high frequen-
cies, was determined employing a multiple scattering tech-
nique, diffusive wave spectroscopy (DWS). The viscoelas-
tic moduli were compared with the results obtained by
Addas et al. [20] who get those properties evaluating the
power spectral density of the thermal fluctuations of em-
bedded micron-sized particles, and with results of mechan-
ical rheology. The viscoelastic moduli of the suspensions
were evaluated using the model developed by Morse [18,
23,24] for tightly entangled isotropic solutions of semi-
flexible polymers. These calculations were compared with
our DWS experiments. As we will present later, Morse’s
model captures some experimental features, although it is

qualitatively far from the experimental values when they
are compared in a wide angular frequency range. We found
two specific drawbacks. The model is not consistent with
the Kramer-Kronig (KK) integral relations, and the model
does not predict a change in the power law of G∗(ω) at
high frequencies, which is clearly observed in the experi-
ments.

2 Experimental section

Materials and methods. fd virus was prepared using
standard microbiological methods [25]. We used the
XL1-Blue strain of Escherichia coli as host bacteria.
Bacteria batches were obtained and infected with the fd
bacteriophage. Bacteria were separated from the media
by using low-speed centrifugation. The virus was precip-
itated with polyethylene glycol (PEG 8000). A purified
sample of virus was obtained after multiple resuspension
and sedimentation steps by ultracentrifugation. The final
pellet was resuspended and extensively dialyzed against
20mM Tris-HCl buffer at pH = 8.15, and sodium azide
was added to prevent bacterial growth (1mM). The
stock suspension was diluted to obtain the needed virus
concentration and salt was added to fix the needed [NaCl]
concentrations. Samples were placed in sealed containers
to avoid water evaporation, and heated at 40 ◦C to
reduce viscosity. Then, negative charged polystyrene
microspheres of a diameter of 2µm in water suspension
(10 w% Bangs Labs Inc. IN, USA) were added while
stirring the samples. Stirring was maintained for 15min
to assure a homogeneous dispersion. To avoid interpar-
ticle interactions, as well as hydrodynamic correlation,
microsphere volume fractions, ϕ, were kept low ∼ 0.03.

Rheology. Mechanical rheometric measurements were per-
formed in a Bohlin Gemini HRnano rheometer (Malvern
Instruments, UK). All dynamic viscoelastic spectra mea-
surements were done using cone-plate geometry (4◦–
40 mm). Measurements were made a day after the solution
preparation to allow them to reach equilibrium.

Atomic force microscopy (AFM). Dilute fd suspensions
deposited on freshly cleaved mica were scanned with a
scanning probe microscope (JSTM-4200 JEOL, Japan)
with a 10µm × 10µm scanner in air and at high vacuum
(10−4 Pa). Noncontact cantilevers with a nominal force
constant of 5.7N/m (HI RES/AlBS, MikroMasch, Esto-
nia) were used, which have diamond-like spikes (tip ra-
dius < 1 nm) on the apex of the silicon tip, mounted on
a rectangular silicon chip with Al backside coating. To-
pographic and phase images were obtained by using the
dynamic mode (AC mode). Here, the cantilever is exter-
nally oscillated close to its fundamental resonance. The
changes in the oscillation amplitude of the cantilever, or
phase lag of the cantilever oscillation relative to the signal
sent to the cantilever’s piezo-driver, provide the feedback
signal for imaging, i.e., a z-scanner controller moves the
sample along the vertical direction such that the oscilla-
tion amplitude and phase of the vibrating cantilever stays
at a fixed value (intermittent contact or tapping mode).
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Transmission electron microscopy (TEM). Dilute fd sus-
pensions were deposited on carbon-coated TEM grids.
Most of the solution was removed by blotting with the
edge of a filter paper. Afterward, a solution made of
2% uranyl acetate for negative staining was applied, and
the samples were dried again. Microstructural analysis
the specimens was performed in a TEM JEM-1200EX11
(JEOL, Japan).

Diffusive wave spectroscopy (DWS). DWS is a multi-
ple scattering technique that probes particle motion over
length scales much shorter than the wavelength of light in
the scattering medium, λ. In conventional dynamic light
scattering (DLS) in the single scattering limit, the char-
acteristic time dependence of the fluctuations is deter-
mined by particle motion over a length scale set by the
inverse wave vector q−1 ∼ λ, where q = (4π/λ) sin(θ/2)
and θ is the scattering angle. In the multiple scatter-
ing regime, the characteristic time dependence is deter-
mined by the cumulative effect of many scattering events
and, thus, by particle motion over length scales much
less than λ. Therefore, the characteristic time scales are
much faster and the corresponding characteristic length
scales are much shorter than for conventional DLS. As
a consequence, DWS can allow us to reach microrhe-
ology at high frequencies, which is not possible with
DLS.

Our DWS setup is a home-made instrument described
elsewhere [26]. In DWS, the Brownian motion of probe
particles incorporated in the fluid of interest is followed
with multiple dynamic light scattering; the particles in
the fluid are in a concentration that makes it turbid.
Here, photons are multiply scattered and lose their q-
dependence. This leads to instruments using only trans-
mission or back-scattering geometries. DWS connects the
temporal electric field fluctuations of the scattered light
emerging from the turbid suspension, characterized by
the time-averaged field autocorrelation function (ACF),
g(1)(t) = 〈E(0)E∗(t)〉/〈|E(0)|2〉, to the motion of the par-
ticles incorporated in the fluid. That is, the MSD of the
probe particles can be determined by collecting the scat-
tered intensity from a single speckle of scattered light, over
a sufficiently long collection period, to allow the evalua-
tion of the time-averaged light intensity ACF, g(2)(t). This
measured ACF is related to g(1)(t) through the Siegert re-
lation: |g(2)(t)| = 1+β|g(1)(t)|2, where β is an instrumen-
tal factor determined by the collection optics. When all
the scattering particles suspended in the fluid are free to
explore the same local environment during the course of a
measurement, the scattering process is ergodic, and time-
averaged (〈. . .〉T ) and ensemble-averaged (〈. . .〉E) correla-
tion functions are identical. In a transmission geometry,
the fluid under investigation with the scattering particles
immersed in it can be treated as a slab with an infinite
transverse extent and a thickness L ≫ l∗, where l∗ is the
transport mean free path. After traveling a l∗ distance,
light propagation is randomized, and the transport of light
in a turbid medium can be described by the diffusion ap-
proximation [27–29]. In this case, the expression of the

time averaged field ACF, g(1)(t) is [27–29]

g(1)(t) =

L/l∗ + 4/3

α∗ + 2/3

(

sinh[a∗x] +
2

3
x cosh[a∗x]

)

(

1 +
4

9
x2

)

sinh

[

L

l∗
x

]

+
4

3
x cosh

[

L

l∗
x

] , (1)

where x = [k2
0〈∆r

2(t)〉]1/2 and α∗ = z0

l∗ . z0 is the dis-
tance into the sample from the incident surface to the
place where the diffuse source is located. If l∗ is known
in the sample, 〈∆r

2(t)〉 can be obtained by using eq. (1).
The ability to store energy upon deformation changes the
temporal correlations of the stochastic forces acting on
the particle at thermal equilibrium, since the suspending
medium must satisfy the fluctuation dissipation theorem.
In this method, it is assumed [30–33] that the Maxwellian
fluid time-dependent memory function, ζ(t), which ac-
counts for both the energy loss and storage upon defor-
mation, is proportional to the bulk-frequency-dependent
viscosity of the fluid, η̃(s) = ζ̃(s)/6πa; this is a generaliza-
tion of the Newtonian fluid behavior. The relation between
G̃(s) and 〈∆r

2(t)〉 can be written as [32]

G̃(s) = sη̃(s) =
s

6πa

[

6kBT

s2〈∆r̃
2(s)〉 − ms

]

. (2)

Here, kB is Boltzmann’s constant, s is the frequency in
the Laplace domain, and a is the particle radius. Using
the unilateral Fourier transform, Fu, an expression for the
viscoelastic modulus as a function of frequency can be
written as [32]

G∗(ω) = G′(ω) + iG′′(ω) =
kBT

πaiωFu[〈∆r
2(t)〉](ω)

. (3)

Several procedures have been followed by different au-
thors [32–35] to determine Fu. In our case, numerical in-
version of eq. (1) allowed us to obtain 〈∆r

2(t)〉. Instead
of making any transformation to 〈∆r

2(t)〉 curve, we first
fitted the curve to a model curve proposed by Bellour et
al. [36], for describing the 〈∆r

2(t)〉 of colloidal particles
in Brownian motion embedded in a complex fluid, over
several decades in time. This method has been success-
fully used in the case of wormlike micelles [26,36,37]. The
model curve is given by

〈

∆r
2(t)

〉

= 6δ2

(

1 − e−
(

D0

δ2
t
)

α
)1/α (

1 +
Dm

δ2
t

)

. (4)

This model was originally thought for Brownian parti-
cles harmonically bound around a stationary mean posi-

tion, as a consequence 〈∆r
2(t)〉 = 6δ2(1−e−(

D0

δ2
t)), where

the particle’s amplitude of the motion, the cage size δ,
is related to the elastic modulus G0(δ

2 = kBT/[6πaG0]),
which does not depend on ω; this result can be obtained
substituting this particular 〈∆r

2(t)〉 in eq. (2). However,
this cage where particles are momentarily trapped fluc-
tuates. Thus, the particles are bound to their mean po-
sition on time scales smaller than some characteristic
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Table 1. The best-fit parameters for the Bellour et al. [36] model for the 〈∆r
2(t)〉 curves of microspheres moving in Brownian

motion in different fd virus suspensions. (T = 25 ◦C, a = 1 µm, and ϕ = 0.03), as well as measured l∗ values for each suspension.

c (mg/ml) [NaCl] (mM) 6δ2 (nm2) Dm (m2/s) × 1016 D0 (m2/s) × 1013 α l∗ (µm)

15.3 100 149.75 2.3567 0.3455 0.28 174.2

15.3 225 188.76 3.8593 0.2738 0.34 158.8

20.1 103 152.22 1.6353 0.5632 0.23 153.9

20.0 228 272.42 1.7950 0.4241 0.24 169.8

20.0 303 277.91 1.4753 0.2012 0.26 127.2

24.3 227 73.50 0.6351 0.1903 0.25 125.1

24.9 300 170.70 3.1125 0.6434 0.25 175.5

24.9 402 196.32 1.1644 0.7311 0.20 156.5

50 225 84.06 2.2204 0.6010 0.25 143.5

time. At long times, the motion again becomes diffusive,
〈∆r

2(t)〉 = 6Dmt, where Dm is the diffusion coefficient
for the particles at long times. Therefore, it was pro-

posed that 〈∆r
2(t)〉 = 6δ2(1− e−(

D0

δ2
t))(1 + Dm

δ2 t) to have
the prescribed diffusion motion at long times. However,
this expression did not describe correctly the dynamics at
the plateau onset time, because dynamics of the particles
exhibits a broad time relaxation spectrum. This led to
include the parameter α, as shown in eq. (4); α = 1 indi-
cates monoexponential relaxation, and the smaller α the
larger relaxation spectrum. Thus, according to this model,
there are three different regimes for the particle motion:
a) at short times, the particles with a Brownian dynam-
ics diffuse freely in the fluid where the supramolecular
structures are embedded with a diffusion coefficient D0;
b) at intermediate times, the MSD remains constant for a
given time interval; here particles are in Brownian motion
trapped in a cage, and c) at longer times, the motion again
becomes diffusive. To obtain the real and complex compo-
nents of G∗(ω), the method of applying directly a Laplace
transform on the fitting curve to 〈∆r

2(t)〉, using analyti-
cal continuity (s → iω), and eq. (2) to get eq. (3) may be
very accurate inside the frequency extremes of the data,
but introduces errors near the frequency extremes due to
data truncation. Therefore, other method was used based
on Mason’s logarithmic derivative method [33,38], where
〈∆r

2(t)〉 is expanded locally around the frequency of in-
terest using a power law and retaining the leading term.
Thus, the viscoelastic modulus can be calculated through

G′(ω) = |G∗(ω)| cos(πα(ω)/2) and

G′′(ω) = |G∗(ω)| sin(πα(ω)/2), (5)

where |G∗(ω)| ≈ kBT
πa〈∆r

2(1/ω)〉Γ [1+α(ω)] , Γ is the gamma

function, and

α(ω) ≡ d ln〈∆r
2(t)〉

d ln t

∣

∣

∣

∣

t=1/ω

.

The evaluation of α is made on the fitting curve to
〈∆r

2(t)〉, eq. (4). According to (5), it is important to note
that the obtained range in the G′(ω) and G′′(ω) curves

would be determined by the inverse time values of the
range where the MSD could be measured. In a few cases, as
mentioned above, Laplace transform of the fitting curve,
eq. (4), was also employed to extend slightly the MSD at
long times, with the aim of extending slightly G′ and G′′

at lower frequencies (using eq. (2) to get eq. (3)) to ob-
serve with better detail the crossing between the G′ and
G′′ curves. In these cases, the fitting procedure extended
the frequency range for the elastic and viscous modulus
from 5 to 2 rad/s. Here, just the curves that completely
overlapped were used.

Finally, l∗ was obtained from transmittance and re-
flectance measurements of the samples to be investigated,
using an integrating sphere. This method is described else-
where [39]. Just to assess the quality of our l∗ measure-
ments in colloidal suspensions of particles with different
sizes and particle volume fractions, we calculated l∗ using
Mie scattering theory following the procedures developed
by several authors [40–42]. The agreement between l∗ val-
ues measured with the method employing an integrating
sphere and l∗ values calculated with Mie scattering the-
ory was excellent. There is just a 3.8% mean deviation
between theory and experiment. Other tests can be found
elsewhere [39] l∗ values for some of the virus suspensions
studied here are presented in table 1; L/l∗ ∼ 15.

It is not easy to determine the error bars in DWS.
Using wormlike micellar systems where defined quantities
can be measured, it is usual for a sample measured in dif-
ferent days to have an error bar of ∼ 7% in the determina-
tion of modulus and of ∼ 8% in the relaxation time [37].
So, we assign an error bar in our measurements of 7–8%.

3 Results and discussion

Bacteriophage fd prepared as mentioned in the Experi-
mental section was suspended and diluted for its observa-
tion and assessment of purity and integrity with TEM and
AFM. Figure 1 presents different images of fd virus at dif-
ferent amplifications obtained when a drop of a dilute sus-
pension was deposited on freshly cleaved mica. Here, we
observe their rugged surface and both virus ends that are
not of the same size. Although we were not able to resolve
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Fig. 1. a) AFM images of fd virus. 1) topography 800×800 nm;
2) phase lag of 1) 800×800 nm; 3) phase lag 300×300 nm; 4) to-
pography 800× 800 nm; 5) topography 600× 600 nm; 6) phase
lag 200 × 200 nm; 7) phase lag 200 × 200 nm; 8) topography
100 × 100 nm; 9) phase lag 100 × 100 nm. b) Current mod-
els to explain the capside of the virus: 10) schematics of the
fd virus structure. 11) Model using image reconstruction by
cryo-electron microscopy [43] 12) model derived by X-ray fibre
diffraction and solid state NMR data [5].

the protein ultra structure, images at very high resolution
were obtained. For a comparison, we included in fig. 1 a
schematic diagram of the virus showing its DNA and cap-
side formed with its minor coat proteins (pIII, pVI, pVIII,
and pIX) and its major coat ones (pVIII), a model image
reconstruction obtained by cryo-electron microscopy [43],
and a model derived by X-ray fibre diffraction and solid
state NMR data [5]. A more detailed image of the kind
of network we are dealing with in a bacteriophage sus-
pension is presented in fig. 2a, where microspheres will be
embedded to perform the DWS experiments. Here, a drop
of fd virus suspension was deposited on a copper TEM
grid and on freshly cleaved mica; the virus network is eas-
ily observed by TEM and AFM, respectively. In fig. 3, we
present a c vs. [NaCl] diagram with the location of differ-
ent phases of the bacteriophage suspension [44,45], where

Fig. 2. Images of the bacteriophage fd network obtained with:
A) TEM and B) AFM. Inset in (A) presents a dilute virus
sample.

Fig. 3. c vs. [NaCl] diagram with the location of the differ-
ent phases of the bacteriophage fd suspension and the phase
separation lines (dotted lines are guides to the eye) as given in
refs. [44] and [45]. In this diagram, the concentrations of the
suspensions studied in the present work are marked with big
diamonds.
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Fig. 4. a) η vs. γ̇ at different virus and salt concentrations. Left
inset: same as in main figure, but at low values of γ̇. Right inset:
η vs. γ̇ curves for a suspension in the nematic phase present-
ing a peak, and for the same suspension, but with embedded
microspheres (a = 1 µm, ϕ = 0.03). b) σ vs. γ̇ for suspensions
presenting a maximum in the viscosity curve of the main fig-
ure. Notation: fractions correspond to virus concentration/salt
concentration.

we have marked the concentration location of the suspen-
sions studied in the present work, namely, at 25, 20, and
15mg/mL. For the first two suspensions, we studied three
salt concentrations and for the latter, just two salt con-
centrations. We have two additional studied suspensions
in the diagram, one at c = 10mg/mL to compare with
data in the literature, and another in the nematic phase
(50mg/mL) that will be discussed later.

3.1 Mechanical rheology

Figure 4a presents the viscosity vs. shear rate obtained
with a cone-plane cell, for different virus and salt concen-
trations. Here, we included for comparison data from Graf

et al. [19], for the case of c = 4.04 and 9.12mg/mL, both
at [NaCl] = 100 mM. The latter data are close to our mea-
surements at 10mg/mL, which shear thins as γ̇ increases.
However, at lower shear rates, our measured viscosities are
slightly larger. This might be due to the fact that our sus-
pension is slightly more concentrated. At c = 15mg/mL,
suspensions shear thin as γ̇ increases, and the viscos-
ity values are not so different when the salt concentra-
tion is varied from [NaCl] = 100 to 225mM. The case of
c = 20mg/mL and [NaCl] = 100 mM presents a peak at
γ̇ ∼ 11.2 s−1. After that peak, the suspension shears thins
in the same way as in [NaCl] = 225 and 300mM. For the
case of c = 25mg/mL, all the suspensions present a peak
no matter the salt concentration, [NaCl] = 225, 300, and
400mM. As in the previous examples, after the peak they
shear thin following the same trend and viscosity values
are close. The γ̇ values where the maxima of the peaks are
found in these suspensions decrease as the salt concentra-
tion increases, γ̇ ∼ 13.3, 8, and 6.7 s−1 for [NaCl] = 225,
300, and 400mM, respectively. In all the cases at low shear
rates (γ̇ ∼ 1 s−1) before the peak, the suspensions with
more added salt present slightly larger viscosities (see left
inset of fig. 4a). At these high ionic strengths, the virus
charge is surely more efficiently screened making them less
rigid and consequently less prone to be aligned by one side,
and by the other the excluded volume is smaller; then, sus-
pensions are slightly more viscous and larger shear rates
are needed to align the viruses. However, the most im-
portant feature in these curves is the viscosity peak at a
specific γ̇. There are a few reports showing this feature in
η vs. γ̇ curves, all coming from the same group [13,15,16].
These authors studied suspensions at several virus concen-
trations up to 23.7mg/mL, with [NaCl] = 100 mM; here,
dextran was added to widen the biphasic region [13,15]. In
particular, the observed peaks [16] occur at large values of
γ̇, when no salt and dextran is added, consistent with the
trend we found. The larger salt concentration corresponds
to the lower γ̇ where peaks are found. Taking into ac-
count that our samples are located at the borderline of the
nematic-isotropic phase transition, and that the bimodal
will be modified by flow, those peaks must correspond to a
transition from tumbling to wagging flow as in [16] where,
as in our case, the biphasic region in the γ̇ vs. c diagram
is not wide. The two regions of shear thinning separated
by a peak in the viscosity vs. γ̇ indicate that at that shear
rate the ordering in the system is partly lost, contrary to
what is expected when the degree of alignment increases
with the shear rate. For different shear rate and fd con-
centrations, viscosity response of fd suspensions to flow
reversals has revealed three characteristic regions [13,16]
one where viscosity shows strongly damped oscillations,
a region where viscosity is weakly damped (here viscosity
reaches its local maximum), and finally a region where the
viscosity response is very strongly damped. The damping
constant and the tumbling period show a sharp increase
at the viscosity peak. This kind of behavior has been pre-
dicted earlier [46,13], where it was argued that the ne-
matic phase will tumble due to the torque that is exerted
on those rods which have an orientation in the wings of
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the orientational distribution function. This torque is then
transmitted to the rest of the distribution due to strong
excluded-volume interactions between the rods. Neverthe-
less, during the tumbling process the distribution passes
the angle corresponding to the extensional direction of
the velocity gradient tensor in shearing flow. At this point
the orientational distribution of the rods will be distorted
with the result that the ordering will be partly lost. With
increasing shear rate this effect becomes stronger and as
a consequence the experimentally observed viscosity will
increase. At a critical shear rate this effect is so strong
that the ordering is completely lost. Since isotropically
distributed rods flow align, the director will not pass the
angle of extensional flow and return to the flow direction.
This is the point where the wagging regime comes into
play and the viscosity reaches a maximum. The damping
of oscillations in the tumbling regime is probably caused
by an interaction between different nematic domains, and
the explanation of the transition from strongly damped
to weakly damped is that in the wagging state the direc-
tor oscillates around the flow direction. Compared to the
tumbling state, the wagging state corresponds to a more
ordered state where the polydomain structure disappears,
as was observed when the viscosity reached a peak [13].
This behavior also was found in the theoretical predic-
tions of the Doi-Edwards-Hess theory of the nematic di-
rector angle, the magnitude of nematic order parameter,
and the average stress as a function of strain after a start
up of the flow for fd suspensions [16]; here the flow be-
havior can exhibit a sharp transition from the tumbling
behavior, where the director continuously rotates, to the
wagging behavior where the director hops back and forth
between two well-defined angles. At higher shear rates the
director is found to be flow aligning as it was found in the
experiments.

In the right inset of fig. 4a, we present two η vs. γ̇
curves, one for a suspension in the nematic phase (c =
50mg/mL, [NaCl] = 225 mM), which presents a peak, and
another for the same suspension, but with embedded mi-
crospheres (particle radius a = 1µm, at ϕ = 0.03), where
the peak due to the tumbling-to-wagging transition is ab-
sent. The average distance between the colloidal particles
surfaces is approximately equal to 3Lc, at ϕ = 0.03. Ap-
parently microspheres destroy the nematic order, because
the system is behaving as if it was in a paranematic state.
Figure 4b presents flow curves, σ vs. γ̇, for suspensions
presenting a peak in the viscosity curve. Here, shear thick-
ening is clearly observed at γ̇ values where the peaks are
found.

Figure 5 presents typical elastic and viscous moduli in
a frequency range of 0.1 ≤ ω ≤ 30 rad/s of virus suspen-
sions, at c = 25mg/ml and different salt concentrations,
measured by mechanical rheometry. For other concentra-
tions, the results are quite similar. G′′(ω) ≥ G′(ω) for all
frequencies below a crossover frequency located around
ωc ∼ 20 rad/s. Therefore, fd virus suspensions exhibit a
liquid-like behavior along this frequency range. At fre-
quencies above this crossover frequency, there is a plateau-
like region, as was observed by Schmidt et al. [17] at
lower virus and salt concentrations. At frequencies above

Fig. 5. Elastic (filled symbols) and viscous (open symbols)
moduli in a frequency range 0.1 ≤ ω ≤ 30 rad/s for fd virus
suspensions at c = 25mg/mL, and different salt concentrations
measured with mechanical rheometry. Lines are guides to the
eye. Inset: concentration dependence of G0 obtained combining
our mechanical results and those of Schmidt et al. [17].

Fig. 6. Below the crossover frequency ωc ∼ 20 rad/s, the fre-
quency dependence of the viscoelastic moduli follows approx-
imately a power law. G′(ω) ∼ ω1.1-1.3 and G′′(ω) ∼ ω0.7-0.9.
Notation: fractions correspond to virus concentration/salt con-
centration.

40 rad/s, the inertia of the employed rheometric cell geom-
etry becomes important and the results are not entirely
reliable. Salt concentration does not modify the G′(ω) and
G′′(ω) curves in an important way; the measurements are
quite close. Since we measured suspensions at higher con-
centrations, the dependence of the plateau modulus, G0,
with concentration can be obtained more precisely, ex-
tending the data given by Schmidt et al. [17] with our
data, as is presented in the inset of fig. 5. G0 was deter-
mined from the relative minima in the phase lag between
σ and γ̇. From these data it follows that G0 ∼ c [1,4].
Below the crossover frequency ωc, the frequency depen-
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dence of the viscoelastic moduli follows approximately a
power law, G′(ω) ∼ ω1.1-1.3 and G′′(ω) ∼ ω0.7-0.9 (see
fig. 6). Schmidt et al. [17] found essentially the same scal-

ing laws, G′(ω) ∼ ω0.9-1.2 and G′′(ω) ∼ ω0.7-0.9 at these
frequencies. At low frequencies (ω ≤ 0.5 rad/s), our G′(ω)
measurements are noisy, probably due to the small value
of the modulus there. Below ωc, the moduli increase as c
increases; for a fixed value of c, the larger the salt concen-
tration the larger the G′′(ω). This tendency is not so clear
in G′(ω), since values are similar within the experimental
error.

3.2 DWS microrheology

Figure 7a presents a typical 〈∆r
2(t)〉 vs. t curve measured

for microspheres (a = 1µm) dispersed in a virus suspen-
sion, which spans over seven orders of magnitude in time.
In this particular case c = 24.9mg/mL, [NaCl] = 300 mM,
and T = 25 ◦C. The 〈∆r

2(t)〉 curve is the result of numer-
ical inversion of eq. (1), where g(2)(t) came from a DWS
experiment (see inset in fig. 7a). Afterwards, the 〈∆r

2(t)〉
was fitted to the model given by Bellour et al. [36], as
described in the experimental section. It is important to
note that no microsphere flocculation was observed during
the experiments. l∗ was measured after sample prepara-
tion and after DWS measurement; l∗ gave the same re-
sults within the experimental error. If some flocculation
occurred, it would be detected, because l∗ measurements
are sensitive to clustering. In addition, after DWS ex-
periments, a sample drop was observed by optical mi-
croscopy and no aggregation was detected, see fig. 7b.
In fig. 7a, we observe three different regimes of motion.
At short times, there is a regime where 〈∆r

2(t)〉 is al-
most a linear function of time; 〈∆r

2(t)〉 = 6D0t, where
D0 is the local diffusion coefficient in the solvent at in-
finite dilution. At intermediate times, 〈∆r

2(t)〉 presents
a shoulder revealing that microspheres are not trapped
by the fd virus network or they can leave it easily. At
longer times, 〈∆r

2(t)〉 is again a linear function of time,
〈∆r

2(t)〉 = 6Dmt, where Dm is the diffusion coefficient
in the suspension at long times. It is interesting to note
the clear difference between the 〈∆r

2(t)〉 curves for sus-
pension of fd virus and the same curves for another
suspension with threadlike structures, the worm-like mi-
cellar solution [26,36,37]. For comparison, in fig. 7a a
typical 〈∆r

2(t)〉 curve for a wormlike micellar network
was included that is made of N -tetradecyl-N ,N -dimethyl-
3-ammonio-1-propanesulfonate (TDPS), sodium dodecyl
sulfate (SDS), and salty water [36]. Here, the network is
made by wormlike micelles that undergo an equilibrated
process of breaking and recombination trapping more ef-
ficiently the particles, but allowing them to escape after
some time [26,36,37]. Instead the fd suspension 〈∆r

2(t)〉
presents just an inflection point around 1ms. All the
〈∆r

2(t)〉 curves for the fd suspensions share this behavior.
As a consequence of this difference, as we will see in the
G′(ω), virus suspensions do not present a region with a
constant plateau modulus.

Several 〈∆r
2(t)〉 curves for microspheres (a = 1µm)

moving in Brownian motion in different virus suspensions

Fig. 7. (Colour on-line) a) Typical 〈∆r
2(t)〉 curve measured

for microspheres (a = 1 µm) dispersed in a virus suspension
(c = 24.9 mg/mL, [NaCl] = 300 mM, and T = 25 ◦C). Red
line, best fitting to the Bellour et al. model [36]. Dashed line
corresponds to a typical 〈∆r

2(t)〉 curve for a wormlike micel-
lar network (TDPS/SDS/brine, [NaCl] = 0.22, microspheres of
a = 1 µm and ϕ = 0.03; details in ref. [37]). Inset: field autocor-
relation function that produced the 〈∆r

2(t)〉 through numeri-
cal inversion. b) Typical optical microscopy image of a drop of
sample of a fd suspension (c = 20 mg/mL, [NaCl] = 228 mM)
embedded with microspheres (a = 1 µm) between a slide and
a cover slide after a DWS experiment, where several layers can
be observed; no microsphere aggregation can be observed.

are presented in fig. 8, at 25 ◦C. The best-fit parameters
for the Bellour et al. [36] model for those curves, i.e., D0,
δ, α, and Dm, are shown in table 1. For a given fd con-
centration, the 〈∆r

2(t)〉 curves are relatively close, and
salt addition sometimes increases the MSD. For a given
salt concentration, the 〈∆r

2(t)〉 values are lower as the
virus concentration increases (lower panel fig. 8). The mi-
crosphere diffusion at short times, D0, must correspond to
diffusion of microspheres in salty water. Here, in our case,
the microspheres are not at infinite dilution and surely
particles do not diffuse freely due to electrostatic interac-
tion. To obtain the D0 values, it is not practical to make an
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Fig. 8. 〈∆r
2(t)〉 vs. t for microspheres (a = 1 µm) moving in

Brownian motion in different fd suspensions at 25 ◦C. In the
two upper panels, c is a constant, and the salt concentration is
varied (“∼” is used to remark that those values are averages
of samples of table 1, with slightly different concentration). In
the lower panel, the salt concentration is fixed and c is varied.

independent measurement of D0 for microspheres in salty
water, because particle flocculation cannot be avoided; the
quantity of added salt in the suspensions is important.
Therefore, these numbers were obtained as fitting param-
eters of the model. As expected, the D0 values obtained
through the fittings are relatively close, but smaller than
the diffusion coefficient of these microspheres in plain wa-
ter at infinite dilution and at T = 25 ◦C (D ∼ 2.29×
10−13 m2/s). 6δ2 gives an estimation of the mean square
displacement of the microspheres in a cage that in this
case is almost nonexistent, since microspheres can eas-
ily leave it. The trend followed by 6δ2 is not clear be-
cause ionic interaction is playing an important role. At
the same salt concentration there is a maximum in 6δ2 be-
tween c = 15 and c = 25mg/mL, however, 6δ2 increases
with salt addition. This seems to indicate that at high
salt concentrations, electrostatic interactions screen the
fd virus charge, and the virus becomes more flexible and
thinner for the microspheres. Therefore, microspheres feel
the network not so compact, as if they would have more
room to move and therefore with less opportunity to be
trapped. The diffusion coefficient for long times Dm is at
some degree dominated by the long-time viscosity of the
suspension ηm through Dm = kBT/6πaηm. As viscosity
increases, by increasing the concentration of the bacterio-
phages, Dm decreases. This is easily observed in table 1,
when salt concentration is constant. However, ionic in-
teraction plays an important role because at constant c,
the viscosity slightly increases with salt addition as noted

above, but as observed in table 1, Dm does decrease as salt
is added. The dynamics of the microspheres at the plateau
onset time shows a broad relaxation spectrum, revealed by
the values for the α parameter. The average value for α in
the fd suspensions presented in table 1 is α = 0.26. The
smaller α, the larger the relaxation spectra (α = 1 indi-
cates monoexponential relaxation). This value is relatively
similar to the case when wormlike micelles are the thread-
like structures embedded in the fluid; for CTAB/NaSal
(α ∼ 0.23–0.26) [26], CTAC7SO3 (α = 0.25–0.30) [36],
and of TDPS/SDS (0.18–0.28) [37]. The virus suspension
corresponding to c = 50mg/mL and [NaCl] = 225 mM
was measured in the nematic phase, despite it is not an
isotropic media and the current form of DWS theory can-
not be used. However, the inclusion of the microspheres
to use DWS apparently destroyed the nematic order, as
shown in the top right inset of fig. 4a, where the tumbling-
wagging transition peak is absent. In the same way, l∗

measured for this sample produced a value similar to the
Mie scattering theory calculation in anisotropic media,
consistent with a lack of nematic ordering. Then, this ap-
parently is a way to explore denser suspensions than those
permitted by phase equilibrium and to be consistent with
DWS theory. The shapes of 〈∆r

2(t)〉 are very similar to
the measurements in the isotropic phase. However there is
a change of tendency in 6δ2 and of Dm as observed in ta-
ble 1. In this particular case, the cage is abnormally small
and Dm is larger than expected.

In a previous report, Kang et al. [47] measured the
short- and the long-time diffusion for particles with differ-
ent radius (a = 3, 35, 210, and 500 nm) in dilute fd suspen-
sions, up to ∼ 1mg/ml, at two values of the ionic strength
(10 and 110mM) using a combination of fluorescence cor-
relation spectroscopy, DLS, and video microscopy. Here,
these authors also evaluated the MSD for these particles
in short periods of time ∼ 0–5 s depending on the size of
the particles. It is difficult to compare their results and
our results, because in our case we use much larger par-
ticles (a = 1µm) embedded in highly concentrated sus-
pensions (∼ 15.3–50mg/ml). However, several trends in
our measurements are similar to their results for big mi-
crospheres (500 nm); diffusion coefficients decreases when
fd concentration increases, and the ratios for Dm/D0 are
small (in our case averaging over all the studied concentra-
tions Dm/D0 ∼ 0.005 and in their study Dm/D0 ∼ 0.08
at 1mg/ml). For the same reasons, the MSDs are orders
of magnitude smaller than in Kang et al. [47].

Figure 9 presents both G′(ω) and G′′(ω) as a function
of the angular frequency (2 ≤ ω ≤ 106) obtained from the
MSDs for several bacteriophage suspensions. Two cross-
ings between G′(ω) and G′′(ω), as well as a plateulike
region are clearly observed. When G′(ω) and G′′(ω) are
obtained evaluating the power spectral density of the ther-
mal fluctuations of embedded micron-sized particles [20],
those features cannot be observed well because of the
accumulated error, and of the finite high-frequency cut-
off of the Kramer-Kronig (KK) integral relation to ob-
tain G′(ω). In general, the suspension is mainly viscous,
G′′(ω) > G′(ω), except in the plateaulike region. This is
probably due to the virus semiflexiblibility (Lc ∼ lp), and
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Fig. 9. G′(ω) (continuous line) and G′′(ω) (dashed lines) as a
function of the angular frequency for several fd suspensions. In
the two upper panels, c is a constant, and the salt concentration
is varied (“∼” is used to remark that those values are averages
of samples of table 1, with slightly different concentration). In
the lower panel, the salt concentration is fixed and c is varied.

that its surface is negatively charged preventing any kind
of sticking among them. At c = 20mg/mL, G′(ω) appar-
ently does not depend on the salt concentration, and for
c = 24.7mg/mL the trend is not clear because the results
for the case of 402mM and 300mM are within the exper-
imental error; although, G′(ω) is larger for 227mM. For
G′′(ω) the trend with salt concentration is unclear. For
a specified salt concentration (227mM), the larger G′(ω)
is presented by the suspension more concentrated in the
bacteriophage. G′′(ω) apparently follows the same trend,
although the values for c = 15.3 and c = 20mg/mL have
the same values, within the experimental error. In fig. 9,
reference lines are included showing that at frequencies
around ∼ 104 s−1 the viscous modulus exhibits a power
law behavior, G′′ ∼ ω3/4, and at high frequencies where
the solvent contribution dominates the modulus follows
G′′ ∼ ω1.

Figure 10 presents a comparison for the G′(ω) and
G′′(ω) curves obtained with the DWS measurements pre-
sented in this work, and with the thermal particle fluc-
tuations method carried out by Addas et al. [20], where
the power spectral density of the thermal fluctuations of
embedded micron-sized particles is evaluated. In this fig-
ure, we included a few of their experimental points to
make the comparison. With DWS, it is possible to ex-
tend the moduli measurements to higher frequencies, and
the DWS data is much less noisy than the data obtained
by Addas et al. [20] (see fig. 10 of ref. [20]). Increas-

Fig. 10. A comparison of G′(ω) (full circles) and G′′(ω)
(open circles) measured with DWS and through evaluating the
power spectral density of the thermal fluctuations of embedded
micron-sized particles carried out by Addas et al. [20] Insets:
a) comparisons between DWS results and mechanical rheome-
try developed by Schmidt et al. [17] and b) by this work (lower
inset).

ing the virus concentration, the magnitude of the vis-
coelastic moduli also increases. Our data follows the same
trend found by these authors, despite salt concentration
in both studies is different ([NaCl] = 50 mM in Addas et
al. [20] and [NaCl] = 103 mM in this work). However, as
observed in our study, salt addition does not change the
microrheology in an important way (see figs. 8 and 9).
We present comparisons between mechanical rheometry
and microrheology in fig. 10. In the inset (a) our DWS
results are compared with mechanical rheology developed
by Schmidt et al. [17] and in inset (b) with the mechan-
ical rheology made by us. Of course mechanical rheology
can measure only at very low frequencies, and transmis-
sion DWS can measure at the intermediate and high fre-
quencies. However, both techniques can measure the first
crossing of G′(ω) and G′′(ω) that increases with fd concen-
tration. From this comparison it is clear that the frequency
of the first crossing is well reproduced by DWS, however,
DWS always presents the crossing at slightly higher mod-
uli values.

As mentioned in the Introduction, Morse proposed a
model for describing the linear rheological properties of
tightly entangled isotropic solutions of semiflexible poly-
mers using a tube model [18,23,24]. In this model, the
high-frequency regime is dominated by a large tension
contribution yielding a complex modulus that varies as
G∗(ω) ∼ ωα. The input parameters in the Morse model
for a monodisperse polymer solution are: filament density
ρ, hydrodynamic filament radius d, solvent viscosity ηs,
as well as Lc, lp, and le. d can be estimated (∼ 10 nm)
from the size of the virus, and the only unknown quan-
tity is le. Basically, in the framework of this theory, two
different methods have been used to estimate this length,
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Fig. 11. (Colour on-line) A comparison of the viscoelastic
moduli obtained experimentally with DWS and obtained by
the Morse model for semiflexible polymers. ρ = 585.6 µm−2

(c = 15mg/mL), d = 10 nm, ηs = 1 mPa s, Lc = 900 nm,
lp = 2.2 µm, and T = 25 C. lAddas

e = 0.49 µm, lA-M
e = 0.35 µm,

lBCA
e = 0.32 µm, and lEMA

e = 0.26 µm. Inset: prediction of the
Morse model for c = 15 (black circles), 20 (red squares), 25
(green triangles) mg/mL, using LEMA

e .

both giving a different power law dependence on ρ and lp.
In one method, the interaction of a polymer chain with
just a single nearby polymer chain is considered; there-
fore, the collective elastic relaxation of the network is
neglected. This is the binary collision approach (BCA)

producing the expression lBCA
e = 3.45ρ−2/5l

1/5
p (eq. (47)

in ref. [24]). The other method treats the surrounding
network around a polymer chain as an elastic contin-
uum represented with a shear modulus equal to the self-
consistently determined plateau modulus of the solution.
This procedure is called the effective medium approach

(EMA), which leads to the formula lEMA
e = 1.70ρ−1/3l

1/3
p

(eqs. (9) and (65), in ref. [24]). In addition, Addas et
al. [20] used other two formulae to evaluate le. In the
first one, they used a combination of the methods just
described; here lA-M

e = ((lBCA
e )4 + (lEMA

e )4)1/4 as sug-
gested by Morse to these authors [20]. In the second for-
mula, they considered that the pre-factor b, in the equa-

tion LAddas
e = bρ−2/5l

1/5
p , is a universal parameter inde-

pendent of the kind of polymer system under study. They
assigned to this parameter the value b = 5.4 based on
the rheological results in suspensions of F-actine; Thus,

lAddas
e = 5.4ρ−2/5l

1/5
p [20]. Figure 11 presents a compari-

son between the viscoelastic moduli obtained by DWS ex-
periments and the Morse model for semiflexible polymers.
The specific parameters used in these calculations were the
following: ρ = 585.6µm−2 (c = 15mg/mL), d = 10nm,
ηs = 1mPa s, Lc = 900 nm, lp = 2.2µm, and T = 25 ◦C.
For the entanglement length we used lAddas

e = 0.49µm,
lA-M
e = 0.35µm, lBCA

e = 0.32µm, and lEMA
e = 0.26µm.

As we can observe in fig. 11, along the frequency range
1 ≤ ω ≤ 106 rad/s, the agreement between experiments

and theory is not good, in particular because the exper-
imental data show a no-well-developed plateau as is ob-
served in the model calculations, no matter what version
of le is used. The minimum in G′′(ω) between the cross-
ings is quite pronounced in the model, as compared with
the experiment. In the inset of fig. 11, we present the cal-
culated moduli for fd suspensions using LEMA

e at different
concentration values, c = 15, 20, 25mg/mL. Clearly, we
can observe that the shear moduli increase as c increases,
but the shape of the moduli is not the right one. To under-
stand the origin of the mismatch, the internal consistency
of the G′(ω) and G′′(ω) curves was tested through evaluat-
ing G′(ω) from G′′(ω) by using the KK integral relations,
which in linear response theory comes from the causality
principle

G′(ω) =
2ω2

π
P

∫ ∞

0

G′′(ω′)/ω′

ω2 − ω′2
dω′, (6)

where P indicates the principal value. As we can observe
in fig. 12a, the G′(ω) curve obtained through introducing
the G′′(ω) curve, coming from the Morse model, into the
KK equation (eq. (6)), deviates from the G′(ω) obtained
directly from the Morse model, mainly at high frequencies.
On the contrary, our experimental values are consistent
with the KK equation, as can be observed in the inset of
fig. 12a. Here, the DWS experimental G′(ω) agrees well
with the G′(ω) calculated with KK equations introducing
this time the DWS experimental G′′(ω) curve into eq. (6).
The KK calculations were carried out fitting a model curve
to the viscous modulus. Afterwards, the elastic modulus
was estimated through numerical integration, according
to eq. (6). The fitting model curve used for G′′(ω) was

G′′(ω) = G0
ωατ1

1 + ωβτγ
2

+
∑

i

Aiω
ai . (7)

For the case of the calculation for the Morse model, we use
only one power law fitting at high frequencies. For the case
of the fd virus experimental data, two power laws were
necessary to fit the viscous modulus at high frequencies.

Another difference with theory can be noticed with

|G∗| =
√

G′2 + G′′2 at high frequencies, where a power

law behavior is observed, |G∗| ∼ ων . We found a change
of exponent at some particular ω0 not observed in the cal-
culations using the Morse model. This behavior has been
observed in wormlike micelles [26,37,48], but it has not
been reported for fd suspensions. In those systems at high
frequencies, where time scales are shorter than those of
wormlike micelle breakage time, the Maxwellian stress re-
laxation processes are essentially frozen, and the micelles
can be regarded as semiflexible polymer chains. Stress re-
laxes via intramicellar processes: First, it is dominated
by the Rouse-Zimm modes and then by the internal re-
laxation of individual Kuhn segments. Therefore, G∗ ex-
hibits a power law behavior, |G∗| ∼ ων , with the expo-
nent ν ∼ 5/9 in the Rouse-Zimm regime, which changes
to ν ∼ 3/4, where the internal bending modes of Kuhn
segments dominate. This change occurs at a critical fre-
quency, ω0, corresponding to the shortest relaxation time
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Fig. 12. a) The G′(ω) curve obtained by introducing the Morse
model G′′(ω) curve into the KK equations deviates from the
G′(ω) obtained from the Morse model mainly at high frequen-
cies, c = 20.1 mg/mL. Inset: the experimental values are con-
sistent with the KK equations, the DWS experimental G′(ω)
agrees well with the G′(ω) calculated with KK equations in-
troducing this time the DWS experimental G′′(ω) curve into
eq. (6). b) Comparison of |G∗| vs. ω obtained with DWS mi-
crorheology (◦) and with the Morse model (△), for a sus-
pension of fd virus with 20.1 mg/mL and [NaCl] = 103mM,
ω0 ∼ 8262.6 s−1. The inset presents how ω0 varies with fd
virus and salt concentration.

in the Rouse-Zimm spectrum [48]. We do not know if
this mechanism is really operating in fd virus, but in
fig. 12 we can observe the power law change. Here, a sus-
pension of 20.1mg/mL and [NaCl] = 103 mM presents a
ω0 ∼ 8262.6 s−1. Intercepts of power laws fittings to |G∗|
at high frequencies, with ν ∼ 3/4, allowed us to estimate
the ω0 values. In the inset of fig. 12, we present how ω0

varies with fd and salt concentrations. ω0 decreases as salt
concentration increases for virus concentrations of 15.3
and 20mg/ml, but on the contrary it increases for the case
of 24.3mg/ml. According to the theory used for wormlike
micelles, ω0 and the persistence length are inversely pro-

portional. However, Morse theory does not involve these
quantities, therefore without a proper theory we cannot
give a proper explanation for this behavior.

4 Conclusion

Microrheology measurements were performed with a mul-
tiple scattering technique (DWS) on bacteriophage fd sus-
pensions in the high concentrated regime, and at different
values of ionic strength. We also measured the shear vis-
cosity vs. shear rate in these suspensions, and the influence
of virus concentration and salt concentration on the shear
thinning, and on the peak position of the curves corre-
sponding to a transition from tumbling to wagging flow.
This study allowed us to make a comparison between the
results of a multiple scattering technique with those ob-
tained with a particle tracking method of embedded par-
ticles, where the thermal fluctuations and the power spec-
tral density is used to evaluate the viscoelastic moduli. In
general, both methods agree, however the DWS results are
much less noisy and can reach larger frequencies. In DWS,
the 〈∆r

2(t)〉 of microspheres embedded in the suspensions
is first obtained, given an insight of the system through
examining the influence of virus concentration and salt
concentration on this quantity, over five orders of magni-
tude in time. From 〈∆r

2(t)〉, the viscoelastic moduli up
to high angular frequencies (106 s−1) were calculated.

In addition, a comparison could be made between
measured and calculated shear moduli. Calculations were
made for a theory for highly entangled isotropic solutions
of semiflexible polymers using a tube model developed by
Morse, where various ways of calculating the needed pa-
rameters were used. Although some features are captured
by the model, it is far from the experimental results mainly
in the 10 s−1 < ω < 105 s−1 range. For describing these
semiflexible polymer systems, more theoretical work has
to be done. In particularly, we found that the theoretical
G′(ω) and G′′(ω) were not consistent with the Kramers
Kronig integral relations. On the contrary, the DWS ex-
perimental G′(ω) and G′′(ω) were consistent with them.
Other features which are not incorporated in the theory,
but that can be clearly observed in the experimental data
are: a) |G∗| ∼ ων also exhibits a change in the power law
behavior exponent at high frequencies, from ν ∼ 5/9 to
ν ∼ 3/4, and b) there is an important influence of the ionic
force of the media on the microrheology fd suspensions.
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